2.DERECE DENKLEMLER
A. BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ EŞİTSİZLİKLER
olmak üzere,

şeklindeki ifadelere birinci dereceden bir bilinmeyenli eşitsizlik adı verilir. Eşitsizliği çözmek için f(x) = ax + b fonksiyonunun tablosu yapılır. Eşitsizliği sağlayan aralık bulunur.
f(x) = ax + b fonksiyonunun işaret tablosu aşağıda verilmiştir.
ax + b = 0 denkleminin kökü
dır.

B. KISA YOLDAN FONKSİYONUN İŞARETİNİN İNCELENMESİ
Kısalığından dolayı bütün eşitsizliklerin çözüm yolunu kolayca bulabileceğiniz bir yaklaşım vereceğiz.
f(x), çarpım veya bölüm fonksiyonu olsun.
Tablo oluştururken sırasıyla şu işlemler yapılır:
1) f(x) in payı ile paydasını sıfır yapan değerler bulunup sırasıyla tabloya yazılır.
2) (Eşitsizliğin tanımı gözönüne alınarak) pay ile paydayı sıfır yapan değerlerden tek sayıda olanlarına tek katlı kök, çift sayıda olanlarına çift katlı kök denir.
3) Her bileşenin en büyük dereceli terimlerinin işaretleri çarpılarak veya bölünerek f(x) in işareti bulunur.
4) Tablodaki en büyük kökün sağındaki kutuya f(x) in işareti yazılır.
5) Tek katlı köklerin soluna sağındaki işaretinin tersi, çift katlı köklerin soluna sağındaki işaretin aynısı yazılır.
Kural
Uyarı

gibi eşitsizliklerin çözüm kümesi bulunurken, içler dışlar çarpımı yapılamaz. Çünkü paydadaki f(x), h(x) ve m(x) in pozitif ya da negatif olduğunu bilmiyoruz.
|
Uyarı

gibi eşitsizliklerin çözüm kümesi bulunurken, g(x) = 0 ın kökleri kesri tanımsız yapacağından çözüm kümesine dahil edilmez.
|
C. İKİNCİ DERECEDEN DENKLEMLERİN KÖKLERİNİN İŞARETLERİNİN İNCELENMESİ
ax2 + bx +c = 0 denkleminin köklerinin varlığını D, köklerinin işaretini
belirler.
a × c < 0 ise denklemin farklı iki reel kökü vardır.
a × c > 0 ise denklemin denklemin köklerinin varlığı ile ilgili kesin bir şey söylenemez.
ax2 + bx + c = 0 denkleminin kökleri x1 ve x2 olsun.
Zıt işaretli köklerin olması için,
olmalıdır.
(x1 < 0 < x2 ve |x1| > x2) olması için,
olmalıdır.
(x1 < 0 < x2 ve |x1| < x2) olması için,
olmalıdır.
Köklerin aynı işaretli olması için,
olmalıdır.
0 < x1 < x2 olması için,
olmalıdır.
x1 < x2 < 0 olması için,
olmalıdır.
PARABOL
A. TANIM
olmak üzere,
tanımlanan
f(x) = ax2 + bx + c biçimindeki fonksiyonlara ikinci dereceden bir değişkenli fonksiyonlar denir.

kümesinin elemanları olan ikililere, analitik düzlemde karşılık gelen noktalara f fonksiyonunun grafiği denir.
İkinci dereceden bir değişkenli fonksiyonların grafiklerinin gösterdiği eğriye parabol denir.

|
f(x) = ax2 + bx + c fonksiyonunun grafiği (parabol), yandaki gibi kolları yukarı doğru olan ya da kolları aşağı doğru olan bir eğridir.
|
Kural

fonksiyonunun grafiğinin (parabolün);
y eksenini kestiği noktanın; apsisi 0 (sıfır), ordinatı f(0) = c dir.
x eksenini kestiği noktaların (varsa) ordinatları 0, apsisleri
f(x) = 0 denkleminin kökleridir.
|
Kural
denkleminde,
D = b2 – 4ac olmak üzere,
D > 0 ise, parabol x eksenini farklı iki noktada keser.
D < 0 ise, parabol x eksenini kesmez.
D = 0 ise, parabol x eksenine teğettir.
|
B. PARABOLÜN TEPE NOKTASI

Şekildeki parabollerin tepe noktaları T(r, k) dir.
Parabol x = r doğrusuna göre simetrik olan bir şekildir. Bunun için, parabolün x eksenini kestiği noktaların apsisleri olan x1 ile x2 nin aritmetik ortalaması r ye eşittir. Bu durumu kuralla ifade edebiliriz.
Kural
f(x) = ax2 + bx + c fonksiyonunun grafiğinin (parabolün) tepe noktası T(r, k) ise,

|
Sonuç
f(x) = ax2 + bx + c fonksiyonunun grafiğinin (parabolün) tepe noktası T(r, k) ise, bu parabolün simetri ekseni x = r doğrusudur.
|
Uyarı
f(x) = ax2 + bx + c ifadesi ikinci dereceden fonksiyonunun en genel halidir.
Bu fonksiyon düzenlenerek f(x) = a(x – r)2 + k hâline dönüştürülürse, tepe noktasının T(r, k) olduğu görülür.
|
Kural
fonksiyonunun grafiğinde (parabolde),
a > 0 ise kollar yukarıya doğru,
a < 0 ise kollar aşağıya doğrudur.
Buna göre, f(x) = ax2 + bx + c fonksiyonunun grafiği aşağıdaki gibidir:

Parabolün en alt ya da en üst noktasına tepe noktası denir.
|
C. PARABOLÜN GRAFİĞİ
f(x) = ax2 + bx + c fonksiyonunun grafiğini çizmek için sırasıyla aşağıdaki işlemler yapılır:
1) Parabolün eksenleri kestiği noktalar bulunur.
2) Parabolün tepe noktası bulunur.
3) Parabolün kollarının aşağı veya yukarı olma durumuna göre, kesim noktaları ve tepe noktası koordinat düzleminde gösterilip, bu noktalardan geçecek biçimde grafik çizilir.
Kural
A) olmak üzere, parabolün tepe noktası T(r, k) olsun.
a < 0 ise, y alabileceği en büyük değer k dir.
a > 0 ise, y nin alabileceği en küçük değer k dir.
B) Parabolün tanım aralığı yani gerçel sayılar kümesi değil de [a, b] biçiminde sınırlı bir gerçel sayı aralığı ise fonksiyonun en büyük ya da en küçük elemanını bulmak için ya şekil çizerek yorum yaparız. Ya da aşağıdaki işlemler yapılır:
f(x) in tepe noktasının ordinatı, yani k bulunur.
f(a) ile f(b) hesaplanır.
a. Tepe noktasının apsisi [a, b] aralığında ise; k, f(a), f(b) sayılarının, en küçük olanı f(x) in en küçük elemanı; en büyük olanı da f(x) in en büyük elemanıdır.
b. Tepe noktasının apsisi [a, b] aralığında değil ise; f(a),
f(b) sayılarının, küçük olanı f(x) in en küçük elemanı; büyük olanı da f(x) in en büyük elemanıdır.
|
D. PARABOLÜN DENKLEMİNİN YAZILMASI
Bir parabolün denklemini tek türlü yazabilmek için, üzerindeki farklı üç noktanın bilinmesi gerekir.
(a, b), (m, n) ve (k, t) noktaları y = f(x) parabolü üzerinde ise;
b = f(a), n = f(m), t = f(k) eşitlikleri kullanılarak parabolün denklemi bulunur.
Kural
x eksenini x1 ve x2 noktalarında kesen parabolün denklemi,
f(x) = a(x – x1)(x – x2) dir.
|
Kural
Tepe noktası T(r, k) olan parabolün denklemi,
y = a(x – r)2 + k dir.
|
E. EŞİTSİZLİK SİSTEMLERİNİN GRAFİKLE ÇÖZÜMÜ
Bir eşitsizliği sağlayan tüm noktaların koordinat düzleminde taranmasıyla, verilen eşitsizliğin grafiği çizilmiş olur.

kümesinin analitik düzlemde gösterimi:


kümesinin analitik düzlemde gösterimi:

F. İKİ EĞRİNİN BİRLİKTE İNCELENMESİ
y = f(x) ile y = g(x) eğrisinin birbirine göre üç farklı durumu vardır.
f(x) = g(x) denkleminin, tek katlı köklerinde eğriler birbirini keser; çift katlı köklerinde birbirine teğettir. Eğer f(x) = g(x) denkleminin reel kökü yoksa, eğriler kesişmez.
Özel olarak,
f(x) = ax2 + bx + c parabolü ile y = mx + n doğrunun denklemlerinin ortak çözümünde elde edilen,
ax2 + bx + c = mx + n
ax2 + (b – m)x + c – n = 0
denkleminin diskriminantı D = (b – m)2 – 4a(c – n) olsun.
D > 0 ise parabol ile doğru iki farklı noktada kesişir.
D < 0 ise parabol ile doğru kesişmez.
D = 0 ise doğru parabole teğettir.
TÜREV ALMA KURALLARI
TÜREVİN GEOMETRİK YORUMU
MAKSİMUM MİNİMUM PROBLEMLERİ
3.DERECE DENKLEMLER
PARABOL
TRİGONOMETRİ
PERMÜTASYON
A. SAYMANIN TEMEL KURALI
1. Toplama Kuralı
Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin elemanlarının sayısına eşittir.
Sonlu ve ayrık iki küme A ve B olsun.

olmak üzere,

Sonuç
Ayrık iki işlemden biri m yolla diğeri n yolla yapılabiliyorsa, bu işlemlerden biri veya diğeri m + n yolla yapılabilir.
|
2. Çarpma Kuralı
2 tane elemandan oluşan (a1, a2) ifadesine sıralı ikili denir. Benzer biçimde
(a1, a2, a3) ifadesine sıralı üçlü
(a1, a2, a3, a4) ifadesine sıralı dörtlü
. . .
(a1, a2, a3, ... , an) ifadesine sıralı n li denir.
A ve B sonlu iki küme olsun
s(A) = m
s(B) = n
olmak üzere,
s(A × B) = s(A) × s(B) = m × n dir.
A × B kümesi birinci bileşenleri A dan ikinci bileşenleri B den alınan sıralı ikililerden oluşur.
Sonuç
İki işlemden birincisi m yolla yapılabiliyorsa ve ilk işlem bu m yoldan birisiyle yapıldıktan sonra ikinci işlem n yolla yapılabiliyorsa bu iki işlem birlikte
m × n
yolla yapılabilir.
|
B. FAKTÖRİYEL
1 den n ye kadar olan sayma sayılarının çarpımına n faktöriyel denir ve n! biçiminde gösterilir.

Sonuç
C. PERMÜTASYON (SIRALAMA)
r ve n sayma sayısı ve r £ n olmak üzere, n elemanlı bir kümenin r elemanlı sıralı r lilerine bu kümenin r li permütasyonları denir.
n elemanlı kümenin r li permütasyonlarının sayısı :

Sonuç
1. P(n, n) = n!
2. P(n, 1) = n
|
1. Dairesel (Dönel) Permütasyon
n tane farklı elemanın dönel (dairesel) sıralamasına, n elemanın dönel (dairesel) sıralaması denir.
Elemanlardan biri sabit tutularak n elemanın dönel (dairesel) sıralamalarının sayısı (n – 1)! ile bulunur.
2. Tekrarlı Permütasyon
n tane nesnenin n1 tanesi 1. çeşitten, n2 tanesi 2. çeşitten, ... , nr tanesi de r. çeşitten olsun.
n = n1 + n2 + ... + nr olmak üzere bu n tane nesnenin n li permütasyonlarının sayısı,

KOMBİNASYON
KOMBİNASYON (GRUPLAMA)
olmak koşuluyla, n elemanlı bir A kümesinin r elemanlı alt kümelerinin her birine, A kümesinin r li kombinasyonu denir.
n elemanlı kümenin r li kombinasyonlarının sayısı, K(n, r), Crn ya da
ile gösterilir.
n elemanlı kümenin r li kombinasyonlarının sayısı:

Kural
Kural
n Î N olmak üzere, n elemanlı sonlu bir kümenin;
0 elemanlı alt kümelerinin sayısı : 
1 elemanlı alt kümelerinin sayısı : 
2 elemanlı alt kümelerinin sayısı: 
. . .
n elemanlı alt kümelerinin sayısı: 
olduğundan tüm alt kümelerinin sayısı:

|
BİNOM AÇILIMI
TANIM
n doğal sayı olmak üzere,

eşitliklerine binom açılımı denir.
sayılarına binom kat sayıları denir.
ifadelerinin her birine terim denir.
ifadesinde
kat sayı, xn–1 ile yr terimin çarpanlarıdır.
Kural
(x + y)n açılımında n + 1 tane terim vardır.
(x + y)n açılımında her terimdeki x ve y çarpanlarının üslerinin toplamı n sayısına eşittir.
(x + y)n ifadesinin kat sayılarının toplamı x ile y yerine 1 yazılarak,
(1 + 1)n = 2n bulunur.
(x + y)n ifadesinin açılımındaki sabit terimi bulmak için x ile y yerine 0 yazılır.
(x + y)n ifadesinin açılımı x in azalan kuvvetlerine göre dizildiğinde baştan r + 1 inci terim:

(x + y)2n nin açılımındaki ortanca terim:

|