css

   
  Uzaktan Eğitime Yakın Bakış
  MAT2-7 Eşitsizlikler
 




EŞİTSİZLİKLER

 

A. BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ EŞİTSİZLİKLER

olmak üzere,

şeklindeki ifadelere birinci dereceden bir bilinmeyenli eşitsizlik adı verilir. Eşitsizliği çözmek için f(x) = ax + b fonksiyonunun tablosu yapılır. Eşitsizliği sağlayan aralık bulunur.

f(x) = ax + b fonksiyonunun işaret tablosu aşağıda verilmiştir.

ax + b = 0 denkleminin kökü dır.

 

B. KISA YOLDAN FONKSİYONUN İŞARETİNİN İNCELENMESİ

Kısalığından dolayı bütün eşitsizliklerin çözüm yolunu kolayca bulabileceğiniz bir yaklaşım vereceğiz.

f(x), çarpım veya bölüm fonksiyonu olsun.

Tablo oluştururken sırasıyla şu işlemler yapılır:

1) f(x) in payı ile paydasını sıfır yapan değerler bulunup sırasıyla tabloya yazılır.

2) (Eşitsizliğin tanımı gözönüne alınarak) pay ile paydayı sıfır yapan değerlerden tek sayıda olanlarına tek katlı kök, çift sayıda olanlarına çift katlı kök denir.

3) Her bileşenin en büyük dereceli terimlerinin işaretleri çarpılarak veya bölünerek f(x) in işareti bulunur.

4) Tablodaki en büyük kökün sağındaki kutuya f(x) in işareti yazılır.

5) Tek katlı köklerin soluna sağındaki işaretinin tersi, çift katlı köklerin soluna sağındaki işaretin aynısı yazılır.

 

Kural

ax2 + bx + c > 0 eşitsizliğinin çözüm kümesi, ise, (a > 0 ve D = b2 – 4ac < 0) dır.

ax2 + bx + c < 0 eşitsizliğinin çözüm kümesi, ise, (a < 0 ve D = b2 – 4ac < 0) dır.

 

Uyarı

gibi eşitsizliklerin çözüm kümesi bulunurken, içler dışlar çarpımı yapılamaz. Çünkü paydadaki f(x), h(x) ve m(x) in pozitif ya da negatif olduğunu bilmiyoruz.

 

Uyarı

gibi eşitsizliklerin çözüm kümesi bulunurken, g(x) = 0 ın kökleri kesri tanımsız yapacağından çözüm kümesine dahil edilmez.

 

 

C. İKİNCİ DERECEDEN DENKLEMLERİN KÖKLERİNİN İŞARETLERİNİN İNCELENMESİ

ax2 + bx +c = 0 denkleminin köklerinin varlığını D, köklerinin işaretini belirler.

a × c < 0 ise denklemin farklı iki reel kökü vardır.

a × c > 0 ise denklemin denklemin köklerinin varlığı ile ilgili kesin bir şey söylenemez.

ax2 + bx + c = 0 denkleminin kökleri x1 ve x2 olsun.

Zıt işaretli köklerin olması için, olmalıdır.

(x1 < 0 < x2 ve |x1| > x2) olması için, olmalıdır.

(x1 < 0 < x2 ve |x1| < x2) olması için, olmalıdır.

Köklerin aynı işaretli olması için, olmalıdır.

0 < x1 < x2 olması için, olmalıdır.

x1 < x2 < 0 olması için, olmalıdır.


Polinom
Karmaşık Sayılar
Çarpanlara Ayırma
Özdeşlikler
Logaritma
2.Dereceden Denklemler
Eşitsizlik
Türev Alma
Kuralları


Türev Geometrik Yorum
Maksimum Minimum
Problemleri


3.Dereceden
Denklemler


Parabol
Trigonometri
LYS Permutasyon
LYS Kombinasyon

LYS Binom

 
  Bugüne kadar 46799 ziyaretçi (174136 klik) sitemize girmiştir. Copyright
TELEFON REHBERİ

http://cengizsoykan.tr.gg

Bilgileriniz sistemimize kaydedilmektedir.

cengizsoykan.tr.gg


website stats
 
 
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol